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SUMMARY

This paper presents a fast formulation of the hybrid boundary node method (Hybrid BNM) for solving
problems governed by Laplace’s equation in 3D. The preconditioned GMRES is employed for solving
the resulting system of equations. At each iteration step of the GMRES, the matrix–vector multiplication
is accelerated by the fast multipole method. Green’s kernel function is expanded in terms of spherical
harmonic series. An oct-tree data structure is used to hierarchically subdivide the computational
domain into well-separated cells and to invoke the multipole expansion approximation. Formulations
for the local and multipole expansions, and also conversion of multipole to local expansion are
given. And a binary tree data structure is applied to accelerate the moving least square approximation
on surfaces. All the formulations are implemented in a computer code written in C++. Numerical
examples demonstrate the accuracy and efficiency of the proposed approach. Copyright � 2005 John
Wiley & Sons, Ltd.

KEY WORDS: meshless method; hybrid boundary node method; fast multipole method; moving least-
squares approximation

1. INTRODUCTION

In numerical analysis of engineering problems two main difficulties arise. The first one is
the discretization of the domain geometry, and the second the computational cost. Numerical
models involve usually the finite element method (FEM) or the boundary element method (BEM)
techniques. The FEM is a well-established and powerful method, in which the computational
cost of solving the system of equations is proportional to the total number of degrees of freedom,
while, a discretization of the domain of interest is required. This results in difficulties with
remeshing in problems involving moving boundaries, large deformations or crack propagation.
The task of mesh generation for complex geometries is often time-consuming and prone to
errors. The BEM partially simplifies the discretization task, as it reduces the dimensionality
of the problem by one. However, it results in a dense and unsymmetrical N × N system
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THE HYBRID BOUNDARY NODE METHOD 661

of linear equations, where N is the total number of degrees of freedom. The computational
cost and memory requirement for directly factoring such equation system increase with O

(
N3

)
and O

(
N2

)
, respectively. This limits the BEM to relatively small scale problems.

In the last decade, a world-wide effort has been made to devise a new class of numerical
methods, namely, the meshfree or meshless methods, aimed at eliminating the human-labour
cost required for meshing the domains of complex-shape. Many types of meshless methods
have been already proposed. These methods fall into two categories: the domain type and the
boundary type. The domain type meshless methods are represented by the element free Galerkin
method (EFG) [1], which uses a global symmetric weak form and the shape functions from
the moving least-squares (MLS) approximation [2]. Although no mesh is required in the EFG
method for the variable interpolation, background cells are inevitable for the ‘energy’ inte-
gration. Another domain type meshless method is the meshless local Petrov–Galerkin (MLPG)
approach [3]. This method uses local weak forms over local sub-domains in an attempt to avoid
generation of the background cells. Because no ‘finite element/boundary element mesh’ is re-
quired neither for the variable interpolation nor for the ‘energy’ integration, this method is truly
meshless.

An example of the boundary type meshless methods is the boundary node method (BNM) [4],
where the MLS approximation functions are inserted into the boundary integral equations (BIE).
Although this method requires only a nodal data structure on the bounding surfaces of a body
for approximation of boundary unknowns, it is not truly meshless, as the cell structure is again
used for numerical integration. Another boundary type meshless method is the hybrid boundary
node method (Hybrid BNM), proposed by Zhang et al. [5–10], which combines the MLS ap-
proximation scheme with the hybrid displacement variational formulation. The Hybrid BNM not
only has the advantage of reducing the spatial dimensions by one as BEM or BNM, but also
does not require any cells neither for interpolation of the solution variables nor for the boundary
integration. Therefore, it is a truly meshless boundary-only method. In fact, the Hybrid BNM
requires only discrete nodes located on the surface of the domain and its parametric representa-
tion. As the parametric representation of created geometry is used in most of CAD packages, it
should be possible to exploit their Open Architecture features, and automatically obtain required
coefficients (representation). However, like in the traditional BEM, its system matrix is dense
and unsymmetrical, requiring O

(
N2

)
memory and O

(
N3

)
operations. Speeding up the Hybrid

BNM with the fast multipole method (FMM) [11–14] is required for solving large scale prob-
lems. The FMM was introduced by Rokhlin [11] as a fast solution method for integral equations
for two dimensional Laplace’s equation and then developed by Greengard [12] as an algorithm
for the rapid evaluation of potential and force fields in a large scale ensemble of charged parti-
cles. In Rokhlin’s method, multipole moments are used to represent distant particle groups and
a local expansion is introduced to evaluate the contribution from distant particles in the form
of a series. The multipole moments associated with a distant group can be translated into the
coefficients of the local expansion associated with a local group. In addition to Rokhlin’s work,
Greengard introduced a hierarchical decomposition of the domain geometry with a quad-tree in
two dimensions and an oct-tree in three dimensions to carry out efficient and systematic group-
ing of particles. The FMM reduces the computational cost for the pair-wise force calculation
from O

(
N2

)
to O(N), hence making possible scientific and engineering computations of large

scale problems.
The FMM has arisen in a variety of applications, ranging from computational astronomy to

molecular dynamics and any problems related to the solution of Laplace’s equation. Applying
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662 J. ZHANG, M. TANAKA AND M. ENDO

FMM to accelerate BEM computation has been investigated by many researchers [15–17],
and the computational costs of the fast BEM, including memory and CPU time, have been
successfully reduced to O(N). In this paper we combine the Hybrid BNM with FMM, and
derive an efficient algorithm (here called FM–HBNM) not only in terms of computer costs but
also in terms of human-labour costs, as mesh generation is not required.

However, unlike BEM using element-based interpolation functions to represent the approx-
imate solutions of boundary variables, Hybrid BNM uses MLS approximation. The MLS
approximation on a surface with a large number of nodes distributed can be costly and leads to
a serious exhaustion of the computer memory, thus becomes another bottleneck for large-scale
computation. In order to overcome this obstruct, we use a binary tree data structure, similar to
the oct-tree data structure used in FMM, to speed up MLS approximation.

This paper is organized as follows. The Hybrid BNM is first outlined for problems in 3D
potential theory. This is followed by coupling of the Hybrid BNM with the FMM. A new
algorithm of the MLS approximation employing the binary tree data structure is described
next. Finally, numerical results for sample problems are presented. Results from the Hybrid
BNM and the combined FM–HBNM are compared with respect to accuracy and computational
efficiency.

2. THE HYBRID BOUNDARY NODE METHOD

In this section we will give a description of Hybrid BNM, taking a 3D potential problem as an
example (for detailed discussion see Reference [6]). The Hybrid BNM is based on a modified
variational principle [18]. The functions in the modified variational principle assumed to be
independent are: potential field within the domain, u, boundary potential field ũ and boundary
normal flux q̃. Consider a domain � enclosed by � = �u + �q with prescribed potential ū and
normal flux q̄ at the boundary portions �u and �q , respectively. The corresponding variational
functional �AB is defined as

�AB =
∫

�

1
2 u, iu, i d� −

∫
�

q̃(u − ũ) d� −
∫

�q

q̄ũ d� (1)

where, the boundary potential ũ satisfies the essential boundary condition, i.e. ũ = ū on �u.
With the vanishing of ��AB over the domain and its boundary, the following equivalent

integral equations can be obtained:

∫
�
(q − q̃)�u d� −

∫
�

u, ii�u d� = 0 (2)

∫
�
(u − ũ)�q̃ d� = 0 (3)

∫
�q

(q̃ − q̄)�ũ d� = 0 (4)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:660–680



THE HYBRID BOUNDARY NODE METHOD 663

Figure 1. Local sub-domain centred at node sI and the source point corresponding to node sJ .

If we impose the flux boundary condition, q̃ = q̄, after the matrices have been computed,
Equation (4) will be satisfied.

Equations (2) and (3) hold for any portion of the domain �, for example, a sub-domain �I ,
defined as an intersection of the domain and a small sphere centred at node sI , and its
boundary �I and LI (see Figure 1).

We use the following weak forms for the sub-domain and its boundary to replace Equa-
tions (2) and (3):

∫
�I +LI

(q − q̃s) vI d� −
∫

�I

u, iivI d� = 0 (5)

∫
�I +LI

(u − ũs) vI d� = 0 (6)

where vI is a weight function; ũs and q̃s are the boundary potential and normal flux at the
boundary ��I , respectively.

We approximate ũ and q̃ at the boundary � by the MLS approximation, as

ũ(s) =
n∑

J=1
�J (s)ûJ (7)

q̃(s) =
n∑

J=1
�J (s)q̂J (8)

where n stands for the number of nodes located on the surface; ûJ and q̂J are nodal values,
and �J (s) is the shape function of the MLS approximation, corresponding to node sJ , which
is given by

�J (s) =
m∑

j=1
pj (s)

[
A−1(s)B(s)

]
jJ

(9)
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664 J. ZHANG, M. TANAKA AND M. ENDO

In the above equation, pj (s) provide a basis of order m consisting of monomials in (s1, s2). In
this study, we take m to be 6, namely, pT(s) = [

1, s1, s2, s
2
1 , s1s2, s

2
2

]
. Matrices A(s) and B(s)

are defined by

A(s) =
n∑

J=1
wJ (s)p (sJ ) pT(sJ ) (10)

and

B(s) = [
w1(s)p(s1) , w2(s)p(s2) , . . . , wn(s)p(sn)

]
(11)

In Equations (10) and (11), wJ (s) are weight functions. Gaussian weight function corresponding
to node sJ can be written as

wJ (s) =




exp
[− (dJ /cJ )2] − exp

[ − (
d̂J /cJ

)2]
1 − exp

[ − (
d̂J /cJ

)2] , 0 � dJ � d̂J

0, dJ � d̂J

(12)

where cJ is a constant controlling the shape of the weight function, and d̂J is the size of the
support for the weight function wJ . It can be seen from the above equation that the weight
function has a compact support determined by parameter d̂J . The shape of the compact support
is usually chosen to be circle in the meshless method literatures, while in this study, we choose
ellipse for the shape of the compact support with d̂J being the half-length of major axis of
the ellipse. Denoting the half-length of minor axis by d̂ ′

J , we have the following expression
for dJ :

dJ =
√√√√(s1 − sJ1)

2 + d̂2
J

d̂ ′2
J

(s2 − sJ2)
2

In order to ensure the regularity of A(s), d̂J and d̂ ′
J should be chosen in such a way that they

are large enough to have a sufficient number of nodes which are covered in the domain of
definition of every sample point. However, too large values of d̂J and d̂ ′

J will lead to loss of
the local character of the MLS approximation, or even an ill-conditioned matrix A(s). In this
study, d̂J and d̂ ′

J is chosen such that 4m ∼ 8m nodes are included in the support of a node.
And the parameter cJ is taken to be such that d̂J /cJ is constant and equals to 5.0. It should be
noted that the MLS is an approximation rather than an interpolation, namely the MLS shape
function does not possess the delta function property as the usual FEM or BEM shape function.
We have constructed a generic MLS interpolation scheme on an arbitrary surface. For details
see Reference [6].

In Equations (5) and (6), ũs and q̃s at �I can be represented by ũ and q̃ expressed in
Equations (7) and (8) since �I is a portion of �, while ũs and q̃s at LI has not been defined
yet. To solve this problem, we select vI such that all integrals vanish over LI . This can be
easily accomplished by using the weight function in the MLS approximation for vI , with the
half-length of the major axis d̂J of the support of the weight function being replaced by the
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THE HYBRID BOUNDARY NODE METHOD 665

radius rI of the sub-domain �I , i.e.

vI (Q) =




exp
[− (dI /cI )

2] − exp
[− (rI /cI )

2]
1 − exp

[− (rI /cI )
2] , 0 � dI � rI

0, dI � rI

(13)

where dI is the distance between a field point Q and the nodal point sI . With vI vanishing
at LI , Equations (5) and (6) can be rewritten as

∫
�I

(q − q̃)vI d� −
∫

�I

u, iivI d� = 0 (14)

∫
�I

(u − ũ)vI d� = 0 (15)

Making use of fundamental solutions, we approximate u inside the domain by

u =
N∑

J=1
us
J xJ (16)

and hence at a boundary point, the normal flux is given by

q =
N∑

J=1

�us
J

�n
xJ (17)

where us
J is the fundamental solution; xJ are unknown parameters; N is the total number of

boundary nodes; n is the outward normal vector to the boundary �. For 3D potential problems,
the fundamental solution is written as

us
J = 1

4�

1

r (Q, sJ )
(18)

where Q and sJ are field point and source point, respectively.
As u is expressed by Equation (16), the last integral on the left-hand side of Equation (14)

vanishes if one excludes node sI , at which the singularity occurs, from the sub-domain �I . This
singularity will be taken into account when evaluating the boundary integrals. By substituting
Equations (7), (8), (13), (16) and (17) into Equations (14) and (15), and omitting the vanishing
terms, we have

N∑
J=1

∫
�I

�us
J

�n
vI (Q)xJ d� =

n∑
J=1

∫
�I

�J (s)vI (Q)q̂J d� (19)

N∑
J=1

∫
�I

us
J vI (Q)xJ d� =

n∑
J=1

∫
�I

�J (s)vI (Q)ûJ d� (20)
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Using the foregoing equations for all nodes, the following set of equations, expressed in matrix
form, is given as

Ux = Hq̂ (21)

Vx = Hû (22)

where

UIJ =
∫

�I

�us
J

�n
vI (Q) d� (23)

VIJ =
∫

�I

us
J vI (Q) d� (24)

HIJ =
∫

�I

�J (s)vI (Q) d� (25)

xT = [x1, x2, . . . , xN ] (26)

q̂T = [
q̂1, q̂2, . . . , q̂N

]
(27)

ûT = [
û1, û2, . . . , ûN

]
(28)

For a well-posed problem, either ũ or q̃ is known at each node on the boundary. However,
transformations between ûI and ũI , q̂I and q̃I is necessary because the MLS approximation
lacks the delta function property. For the panels where ũ is prescribed, ûI is related to ūI by

ûI =
N∑

J=1
RIJ ũJ =

N∑
J=1

RIJ ūJ (29)

and for the panels where q̃ is prescribed, q̂I is related to q̄I by

q̂I =
N∑

J=1
RIJ q̃J =

N∑
J=1

RIJ q̄J (30)

where RIJ = [
�J

(
sI

)]−1
(see Reference [19]).

Imposing the boundary condition, Equations (21) and (22) can be assembled into the
following overall system of equations:

Ax = d (31)

in which the I th row of matrix A is supplied identically from that in U or V according
to the boundary condition at the node sI , and the corresponding term of d comes from the
matrix–vector product of Hq̂ or Hû.
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The final matrix equation (31) is solved for unknown parameters x. Then, by back-substitution
into Equations (21) and (22), the nodal values are obtained by

q̂ = H−1Ux (32)

û = H−1Vx (33)

and potentials and normal fluxes at the boundary can be computed using Equations (7) and (8).
Potentials and potential gradients at interior points are evaluated by the tradition bound-
ary integral equations. Like other hybrid models (for example, the hybrid boundary element
method [18]), the Hybrid BNM has a drawback of ‘boundary layer effect’ (the accuracy of the
results in the vicinity of the boundary is very sensitive to the proximity of the interior points to
the boundary). To avoid this drawback, an adaptive face integration scheme has been proposed
in Reference [6]. As demonstrated, the Hybrid BNM is a boundary-only meshless approach.
No boundary elements are used for both interpolation and integration purposes. Therefore, it
can circumvent the discretization difficulty to a large extent.

3. ACCELERATING HYBRID BNM WITH FMM

The computational efficiency of the Hybrid BNM in comparison with 3D domain schemes, e.g.
FEM or EFG, is similar to that of BEM. Actually, considering a 3D mesh with n3 nodes, the
computational cost for FEM is of order O

(
n3

)
. On the other hand, the number of boundary

nodes is around n2, and hence, both the operation count and the memory requirements for
the buildup of matrix equation (31) are of the order O

(
n4

)
. The operation count increases

to O
(
n6

)
if we attempt to solve the equation with conventional direct solvers such as Gaussian

elimination. Therefore, although the dimensionality of the problem is reduced by one in Hybrid
BNM, it is less computationally efficient than a domain scheme. However, the computational
cost of the Hybrid BNM can be dramatically reduced to O

(
n2

)
when it is combined with the

FMM [11–14]. In this section, we will explain in detail the implementation of FMM techniques
in Hybrid BNM.

The FMM is called one of the top 10 algorithms of the 20th century. It is an algorithm
for achieving fast products of particular dense matrices with vectors, and allows reduction of
memory complexity. The FMM uses multipole expansions (in term of series) to approximate the
effects of a distant group of particles (nodes in Hybrid BNM) on a local group, and thus achieve
faster summation. In scientific computing we almost never seek exact answers. Instead of solving
the problem we solve a ‘nearby problem’ that gives ‘almost’ the same answer. Moreover, FMM
bounds the error analytically. We can determine how many terms are required in a multipole
expansion to achieve a certain guaranteed level of accuracy. Therefore, FMM can be arbitrarily
accurate. Another aspect of FMM is that it uses a hierarchical decomposition of space to define
ever-larger groups as distances increase. For 3D problems, an oct-tree decomposition is usually
employed. The details of the FMM algorithm can be found in References [13, 14].

In order to utilize the FMM techniques, it is necessary to use an iterative equation solver for
solving Equation (31). The most time-consuming part of an iterative method, when employed
for solving a linear system, is the calculation of matrix–vector product at each iteration step.
In this paper, the restarted preconditioned GMRES [20] is employed, and an adaptive version

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:660–680
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of FMM [14] used to accelerate the product. Following Reference [14], we first construct a
hierarchy of boxes which refine the computational domain into smaller and smaller regions.
At the refinement level 0, we have the entire computational domain. Refinement level l + 1 is
obtained recursively from level l by subdivision of each box into eight equal parts. This yields
a natural tree structure, where the eight boxes at level l + 1 obtained by subdivision of a box
at level l are considered its children. Subdivision of the box is stopped when the number of
nodes included in the box is smaller than a prescribed value. If a child box does not contain
any node (is empty), we delete it. A childless box is called a leaf.

Definition 1
Two boxes are said to be neighbours if they are at the same level and share at least a vertex
(a box is also a neighbour of itself).

Definition 2
Two boxes are said to be well separated if they are at the same level and are not neighbours.

Definition 3
With each box b we associate an interaction list, consisting of the children of the neighbours
of b’s parent which are well separated from box b.

Now consider the inner product between the Ith row of matrix A and an iteration vector x′
corresponding to the solution vector x, which is given by either

N∑
J=1

∫
�I

us
J vI (Q)x′

J d� (34)

or

N∑
J=1

∫
�I

�us
J

�n
vI (Q)x′

J d� (35)

where x′
J is the Jth element of the iteration vector x ′.

For simplicity, only, we will ignore for a moment the sum in expression (35). Suppose the
boundary node sI belongs to a leaf of the hierarchical tree of boxes. We divide sum (34)
into two parts. The first part is the sum of the contributions of the nodes contained in the
neighbourhood of the leaf (these nodes are called near nodes), while the second is that of the
contributions of the nodes that are outside the leaf’s neighbourhood (these nodes are called far
nodes). Sum (34) can then be expressed as

N∑
J=1

∫
�I

us
J vI (Q)x′

J d� =
Nnear∑

J

∫
�I

us
J vI (Q)x′

J d� +
Nfar∑
J

∫
�I

us
J vI (Q)x′

J d� (36)

where Nnear and Nfar are the numbers of the near nodes and far nodes, respectively.
We will compute the sum for the near nodes directly, while use multipole expansion to

speed up the summation for the far nodes. Consider a leaf Blocal and another leaf Bfar which
is on the interaction list of Blocal. Blocal contains node sI , whilst Bfar contains Nb nodes. We
first create a spherical co-ordinate system with the origin located at the centre of Bfar. Suppose
the spherical co-ordinates of the quadrature point Q and node sJ are (r, �, �) and (�, �, �),
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Figure 2. Co-ordinate system for multipole expansion.

respectively (see Figure 2). Since the condition r>� holds, the fundamental solution (18) can
be expanded in terms of spherical harmonic series [13, 14] as

us
J = 1

4�

1

r (Q, sJ )
= 1

4�

∞∑
n=0

n∑
m=−n

�nY−m
n (�, �)

Ym
n (�, �)

rn+1 (37)

where Ym
n (x, y) is defined by

Ym
n (x, y) =

√
(n − |m|)!
(n + |m|)! P |m|

n (cos x)eimy (38)

with P m
n expressed by Rodrigues’ formula as

P m
n (x) = (−1)m

(
1 − x2)m/2 dm

dxm
Pn(x)

and where Pn(x) denotes the Legendre polynomial of degree n. Using Equation (37), the far
field sum in Equation (36) for the nodes included in Bfar can be expressed by

Nb∑
J

∫
�I

us
J vI (Q)x′

J d� = 1

4�

∞∑
n=0

n∑
m=−n

Mm
n

∫
�I

Ym
n (�, �)

rn+1 vI (Q) d� (39)

where Mm
n are called multipole moments and given by

Mm
n =

Nb∑
J

�n
J Y−m

n

(
�J , �J

)
x′
J (40)

One might be inclined to think that the multipole expansion in Equation (39) makes the
sum (34) more complicated and requires more operations to evaluate it. Actually, since the pair
of points Q and sJ is separated in the expanded expression, the multipole moments Mm

n are
related only to the nodes in Bfar and the centre of Bfar. This allows us to compute Mm

n without
concerning node sI . Furthermore, once the moments Mm

n are computed, they can be reused
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670 J. ZHANG, M. TANAKA AND M. ENDO

Figure 3. Co-ordinate system for local expansion.

for all the other corresponding nodes contained in boxes that are well separated from Bfar.
The re-use of computed terms is the key idea of the FMM, which is clarified in the following
discussion.

In order to reuse terms in
∫
�I

Ym
n (�, �)/rn+1vI (Q) d�, we move the origin of the spherical

co-ordinate system to Blocal’s centre, and denote the co-ordinates of Bfar’s centre and point Q
in the new co-ordinate system by

(
�′, �′, �′) and

(
r ′, �′, �′), respectively (see Figure 3). As

Bfar and Blocal are well separated, the condition �′>2r ′ is fulfilled. Hence Ym
n (�, �)/rn+1 can

be again expanded in terms of spherical harmonics as [14]

Ym
n (�, �)

rn+1 =
∞∑

j=0

j∑
k=−j

i|k−m|−|k|−|m|Am
n Ak

j Ym−k
n+j

(
�′, �′)

(−1)nAm−k
n+j �′j+n+1

Y k
j

(
�′, �′) r ′j (41)

where Am
n is defined by

Am
n = (−1)n√

(n − m)!(n + m)!
Substituting Equation (41) into Equation (39) yields

Nb∑
J

∫
�I

us
J vI (Q)x′

J d� =
∞∑

j=0

j∑
k=−j

Lk
j Sk

j (42)

where Lk
j are called local moments and given by

Lk
j =

∞∑
n=0

n∑
m=−n

Mm
n

i|k−m|−|k|−|m|Am
n Ak

j Ym−k
n+j

(
�′, �′)

(−1)nAm−k
n+j �′j+n+1

(43)
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Figure 4. Conversions of multipole moments to local expansions.

and Sk
j given by

Sk
j = 1

4�

∫
�I

Y k
j

(
�′, �′) r ′j vI (Q) d� (44)

Equation (43) is usually called multipole to local translation, in which the coefficients are
functions of the relative co-ordinates of the centre of Bfar to the centre of Blocal, only, and Sk

j
involves only the local co-ordinates of the quadrature point Q about the centre of Blocal. They
can be computed independently.

We have so far discussed the evaluation of influences of a cluster of far nodes included
in a leaf Bfar on a node of another leaf Blocal, where Bfar is on Blocal’s interaction list.
If Bfar’s parent belongs to the interaction list of Blocal’s parent (see Figure 4), we first translate
the multipole moments Mm

n about Bfar’s centre into M ′k
j , which are about the centre of Bfar’s

parent, by [13, 14]

M ′k
j =

j∑
n=0

n∑
m=−n

Mk−m
j−n

i|k|−|m|−|k−m|Am
n Ak−m

j−n �nY−m
n (�, �)

Ak
j

(45)

where (�, �, �) are the spherical co-ordinates of the centre of Bfar with the origin of the
co-ordinate system located at the centre of Bfar’s parent.

Then, M ′k
j into L′m

n is translated using Equation (43). Finally, we shift the centre of the local
moments L′m

n from the centre of Blocal’s parent to Blocal’s employing the following equation
[13, 14]:

Lk
j =

∞∑
n=j

n∑
m=−n

L′m
n

i|m|−|m−k|−|k|Am−k
n−j Ak

j Ym−k
n−j (�, �)�n−j

(−1)n+jAm
n

(46)

where (�, �, �) are the spherical co-ordinates of the centre of Blocal with the origin of the
co-ordinate system located at the centre of Blocal’s parent.

Equations (45) and (46) are called multipole to multipole and local to local translation,
respectively. Together with the multipole to local translation (Equations (43)), these translations
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are denoted by M2M, L2L and M2L in Figure 4, respectively. If Bfar’s grandparent belongs
to the interaction list of Blocal’s grandparent, we first translate the multipole moments Mm

n

from the centre of Bfar to the centre of Bfar’s parent, next from the centre of Bfar’s parent
to the centre of Bfar’s grandparent, using Equation (45). Then, we convert Mm

n into Lk
j from

the centre of Bfar’s grandparent to the centre of Blocal’s grandparent using Equation (43).
Finally, we translate the local moments Lk

j from the centre of Blocal’s grandparent to the
centre of Blocal’s parent, and subsequently to the centre of Blocal, using Equation (46). In
general, if one of Bfar’s ancestors at level l belongs to the interaction list of one of Blocal’s
ancestors, the above process is repeated recursively until level l. In this scheme, all the far to
near conversions are performed between a given box and boxes on its interaction list. This
guarantees that condition �′>2r ′ holds as required by Equation (43) and maintains a uniform
precision.

The computation process of sum (35) is the same as that of sum (34), except that
Equation (42) is replaced by

Nb∑
J

∫
�I

�us
J

�n
vI (Q)x′

J d� =
∞∑

j=0

j∑
k=−j

Lk
j

�Sk
j

�n
(47)

where �Sk
j /�n is given by

�Sk
j

�n
= 1

4�

∫
�I

�Y k
j

(
�′, �′) r ′j

�n
vI (Q) d� (48)

In practical computations, the summations in the infinite series (42), (43), (46) and (47) are
truncated after p terms. The estimation of errors involved in truncated summations as well as
their proofs can be found in Reference [14].

We have described the process of summations (34) and (35), for a cluster of nodes contained
in a leaf Bfar, with respect to a node sI included in another leaf Blocal which is well separated
from Bfar. In the fast multipole algorithm, this summation is done in a more efficient way
rather than performed separately for each pair of well separated leaves. We sum instead the
multipole moments about a box centre from all of its children before converting them into local
moments, and sum all the local moments before shifting them to the centres of its children. More
specifically, the multipole and local moments are orchestrated in the tree-structured hierarchy
of boxes. Multipole moments are either combined to form multipole moments which represent
distributions in a greater portion of the domain, or transformed into local moments. Multipole
moments for the boxes are accumulated from leaves of the tree to the root (upward pass); and
local moments are distributed from the root to the leaves for evaluation of far field influence
at the nodes in the leaf (downward pass). This is accomplished in order of N operations. The
algorithm is summarized as follows.

FM–HBNM ALGORITHM

Initialization

Step 1: Choose a smallest box that contains the entire computational domain, and use it as
the root box of the hierarchical decomposition of the domain.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:660–680



THE HYBRID BOUNDARY NODE METHOD 673

Choose the maximum number of nodes contained in a leaf.
Construct the hierarchy of boxes using an oct-tree data structure.
Step 2: Choose the desired multipole expansion order p. With each box that l >1, associate

a p × p matrix which describes the multipole moments Mm
n about the box centre. With each

box that l>2, associate a p × p matrix which describes the local moments Lk
j about the

box centre. With each leaf associate two matrices of size p × p × Nb, which describe Sk
j

and �Sk
j /�n, where Nb denotes the number of nodes contained in that leaf. Associate other

two matrices UL and VL of size Nb ×Nn to the leaf, which describe the near-field coefficients
of U and V, with Nn being the number of nodes contained in the neighbourhood of that leaf.

Step 3: For each leaf, compute UL, VL, Sk
j and �Sk

j /�n by Equations (23), (24), (44)
and (48), respectively.

Upward pass

Step 4: For an iteration vector x′, form multipole moments Mm
n about the centre of each

leaf from all the nodes included in that leaf by means of Equation (40).
Step 5: For levels l from the finest level to level 2;
Form multipole moments Mm

n about the centre of each box at level l by merging multipole
moments from its children using Equation (45) (M2M in Figure 4).

Downward pass

Step 6: For levels l from level 2 to the finest level,
For each box i at level l,
Convert the multipole moments Mm

n of each box j in the interaction list of box i to a local
expansion about the centre of box i, using Equation (43) (M2L in Figure 4).

If l � 3, then shift the local expansion of i’s parent to itself, using Equation (46) (L2L in
Figure 4).

Add these two local expansions together.
Step 7: For each node in each leaf,
Compute the far field influence using Equations (42) and (47).
Compute the near field influence deduced by the nodes contained in the neighbourhood of

the leaf directly.
Add the two parts.

In the above algorithm, the multipole and local moments associated with a box at each level
are reused to the full extent. For example, in computation of Equations (42) and (47), the local
expansion of a leaf is reused for all the nodes belonging to the leaf; and in the conversion of
multipole moments into a local expansion (Equation (43)), the multipole moments of a box is
repeatedly used for the boxes whose interaction list contains that box, and so on. This is why
FMM can speed up the matrix–vector multiplication. An estimation of computational cost of
the algorithm can be found in References [13, 14].

4. BINARY TREE DATA STRUCTURE FOR MLS APPROXIMATION

In the previous section, we have discussed how to reduce the computational cost involved in
the solution of the system of equations using GMRES and FMM. We can see that the FMM
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Table I. Flowchart of original MLS approximation.

1. Choose a finite number of nodes on the panel
2. Determine the support sizes, d̂I and d̂ ′

I
, of the weight function for each node

3. Loop over all nodes located on the panel

a. determine the nodes sI that wI (s)>0
b. if wI (s)>0, calculate the right hand side of Equation (10)
c. add contributions to A(s)

4. Solve the inversion of A(s)
5. Loop over all nodes located on the panel

For each node sI that wI (s)>0, calculate wI (s)p(sI ) and then �I (s) using Equations (11) and (9)

concerns matrices U and V, only, while leaves matrix H intact. The matrix H involves the
MLS shape functions. There are two usages of H in Hybrid BNM. One is for computing the
right hand side vector of Equations (21) and (22), while the other for solving the boundary
unknowns û and q̂ by Equations (32) and (33) after x has been solved. Since the MLS
approximation in Hybrid BNM is conducted separately on individual panels, the matrix H,
unlike U and V, is diagonally blocked. Even so, for a panel with a large number of nodes
located, the size of the corresponding block will be extremely large, and the evaluation of the
shape functions in Equation (25) can be expensive. In order to solve this problem, we use a
binary tree data structure to speed up MLS approximation and reduce the memory requirements
for storing matrix H.

In BEM, the number of shape functions for an evaluation point equals to the number of
nodes of an element, while in Hybrid BNM, it equals to the total number of nodes on the
panel. Although most of them are zero due to the compact support of the weight function of
each node, we do not know which of them is zero before it is computed. The reason is, in
the input data structure of Hybrid BNM, there is no information of connectivity between the
nodes. According to Equations (9)–(12), the flowchart of the original MLS approximation at
a panel is shown in Table I.

Note that in Table I, computation of the shape functions for each evaluation point needs to
loop over all the nodes located on the panel to check the condition, wI (s)>0. This check is
time consuming especially when the number of nodes is very large. Moreover, the locations
of the non-zero entries in every row of matrix H (see Equation (25)) depend upon the nodes
located inside the domain of influence of the source node. If the shape and size of the domain
of influence for all of the nodes are taken to be the same as each other, it may be easy to see
that the resulting block of H becomes banded with non-zero entries being symmetrically and
sparsely located with unsymmetrical values. However, since we cannot determine the bandwidth
in advance, we have to store the entire block in memory. This can lead to exhaustion of
computer memory.

In order to overcome the above two shortcomings, we adapt the tree data structure used in
FMM and apply it to MLS approximation. Because the MLS approximation in Hybrid BNM
for 3D problems is carried out on 2D panels, we use a binary tree data structure to represent
a hierarchical partitioning of a panel with cells. Because further that the panel is represented
in parametric form, we subdivide the panel in parametric space. We associate a cell with the
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Table II. Flowchart of MLS approximation with a binary tree data structure.

1. Choose a finite number of nodes on the panel
2. Determine the support sizes, d̂I and d̂ ′

I
, of the weight function for each node

3. Create the binary tree data structure to subdivide the panel into hierarchical cells in the parametric space
4. Find the leaf Lc that includes the evaluation point s
5. Loop over the nodes included in the neighbourhood of Lc

a. determine the nodes sI that wI (s)>0
b. if wI (s)>0, calculate the right hand side of Equation (10)
c. add contributions to A(s)

6. Solve the inversion of A(s)
7. Loop over the nodes included in the neighbourhood of Lc

For each node sI that wI (s)>0, calculate wI (s)p(sI ) and then �l (s) using Equations (11) and (9)

following parameters:

• Centre.s1 denotes the value of parametric co-ordinate of the centre of the cell in s1
direction.

• Centre.s2 denotes the value of parametric co-ordinate of the centre of the cell in s2
direction.

• H.s1 denotes the side length of the cell in s1 direction.
• H.s2 denotes the side length of the cell in s2 direction.
• Dmax.s1 denotes the maximum value of d̂I among the nodes included in the cell.
• Dmax.s2 denotes the maximum value of d̂ ′

I among the nodes included in the cell.

Consider the biggest cell, which contains the entire panel and refer this cell as the level 0 or
root cell. Given a subdivision S of the computation cell, if H.s1 is bigger than Dmax.s1, we
subdivide S into two equal cells in s1 direction. Similarly, we subdivide it into two equal cells
in s2 direction if H.s2 is bigger than D max.s2. This process is recursively repeated down from
the root cell to some finest level. We refer the cells at the finest level as leaves. In the next
step, we create a neighbour list for every leaf. For a leaf L, we loop over all other leaves Li .
If the distances between Li and L in both s1 and s2 directions are smaller than D max.s1
and D max.s2 associated with Li , Li is treated as a neighbour of L’s and added to L’s
neighbour list. A leaf is also a neighbour of itself. Now, instead of creating an n × n square
block of H, we associate each leaf a j ×k sub-matrix hjk , where n is the total number of nodes
on the panel; j denotes the number of nodes included in the leaf; and k the number of nodes
included in the neighbours of the leaf. This scheme saves computer memory considerably.

With the binary tree data structure, the routine for computing the shape functions becomes
that shown in Table II.

The loop for checking weight functions in step 5a and 7 in Table II contains the nodes that
are in the neighbourhood of a leaf, only. When the total number of nodes at the panel is large,
the saving in CPU time by the new algorithm will be significant.

5. NUMERICAL RESULTS

The proposed techniques have been implemented in C++. Four numerical examples are presented
to demonstrate the performance of the method. The first three examples consider relatively

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:660–680



676 J. ZHANG, M. TANAKA AND M. ENDO

Figure 5. Geometries and dimensions for the first three examples.

simple geometries, namely, a cube, a sphere and a cuboid including a void of capsule shape.
Dimensions of the three geometries are illustrated in Figure 5. In order to assess the accuracy
of the proposed approach the following field distribution is used as the exact solution:

u = x3 + y3 + z3 − 3yx2 − 3xz2 − 3zy2 (49)

The error is estimated on sample points using the formula from Reference [4]

e = 1

|u|max

√
1

Ns

Ns∑
i=1

(
u

(e)
i − u

(n)
i

)2
(50)

where Ns is the number of sample points; |u|max is the maximum value of u over all sample
points; the superscripts (e) and (n) refer to the exact and numerical solutions, respectively.

In the cube model, potential boundary conditions are imposed on the top and bottom faces
and normal flux boundary on other faces according Equation (49). The relative error is evaluated
over 21 sample points uniformly distributed along a line segment from (0, 0, 0) to (1, 1, 1)

using Equation (50). In the sphere the model, potential boundary conditions are imposed at the
entire surface. The relative error is evaluated over 21 sample points uniformly distributed on a
diameter from (−5, 0, 0) to (5, 0, 0). For the cuboid, potential boundary conditions are imposed
on the two end faces and normal flux boundary conditions on the other faces, including the
side faces and the inner surface of the cavity. The relative error is evaluated over 42 sample
points uniformly distributed on a line all through the cuboid (from (7, −30, 0) to (7, 30, 0)).

Computations are performed on a desktop computer with an Intel(R) Pentium(R) 4 CPU
(1.99 GHz). The restarted preconditioned GMRES is employed with the preconditioner being
the inverse of the blocked diagonal matrix corresponding to the nodes in leaves, according
to Reference [16]. Following Reference [17], we truncate all the infinite expansions after
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Table III. Timing results for FM–HBNM with nodes distributed on the surface of a cube.

N Levels Iterations TFMM Tdir(s) EFMM Edir

600 3 13 63 2 5.5 × 10−3 5.4 × 10−3

2400 4 16 78 88 2.7 × 10−3 2.7 × 10−3

5400 4 18 446 1019 1.9 × 10−3 1.8 × 10−3

15 000 5 20 706 (21 841) 1.2 × 10−3

60 000 6 27 2782 (1 397 805) 5.9 × 10−4

101 400 6 32 11 988 (6 746 939) 4.5 × 10−4

153 600 6 35 13 471 (23 451 280) 4.0 × 10−4

Table IV. Timing results for FM–HBNM with nodes distributed on the surface of a sphere.

N Levels Iterations TFMM Tdir(s) EFMM Edir

540 3 16 54 1 3.8 × 10−3 3.8 × 10−3

2088 3 17 83 47 1.2 × 10−3 1.2 × 10−3

4664 4 20 458 515 9.1 × 10−4 9.1 × 10−4

8252 4 21 483 (2852) 7.3 × 10−4

18 496 5 27 2267 (32 119) 5.0 × 10−4

32 824 5 27 2463 (179 517) 3.8 × 10−4

73 664 6 39 10 221 (2 029 072) 2.6 × 10−4

p = 10, set the maximum number of boundary nodes in a leaf box to be 60, and termi-
nate the iteration when the relative error is less than 10−6. For comparison purposes, the
models have also been solved by means of the original Hybrid BNM with a direct solver
(Gaussian elimination method) in the cases where it is capable of solving it. For the three
geometries, computations have been carried out with different numbers of nodes uniformly scat-
tered on the bounding surface of the bodies. The results of our experiments are summarized in
Tables III–V. In each table, the first, second and third column list the number of nodes, number
of levels used in the multipole hierarchy, and number of iterations of GMRES, respectively.
Columns four and five indicate the times required for FM–HBNM and the original Hybrid
BNM, respectively. As the direct calculations are restricted to about 5400 nodes due to the
limitation of the hardware, the stated times in parentheses are estimated by extrapolation. In
the sixth and seventh column, the relative errors of FM–HBNM and the original Hybrid BNM
are presented. The results demonstrate that FM–HBNM is extremely effective for large-scale
computation. The computational time of FM–HBNM is nearly proportional to the problem size.
From Table III, it is seen that FM–HBNM has an advantage over the original Hybrid BNM
when the number of unknowns is bigger than around 2400.

In order to further show the advantages of FM–HBNM, the fourth example deals with a
complicated geometry, where a cuboid including many cavities in the shape of sinusoidal tubes.
The geometry and its main dimensions are shown in Figure 6. The radii of all the tubes are
identical and equal to 0.5. A Dirichlet problem is solved for which the essential boundary
conditions are imposed on all the surfaces (including the cavities) according to Equation (49).
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Table V. Timing results for FM–HBNM with nodes distributed on the surface of a cuboid.

N Levels Iterations TFMM Tdir(s) EFMM Edir

937 4 14 31 5 2.6 × 10−3 2.6 × 10−3

1400 4 14 179 15 2.0 × 10−3 2.0 × 10−3

4598 4 14 182 523 4.6 × 10−3 4.6 × 10−4

14 091 5 17 773 (15 053) 3.5 × 10−4

56 186 6 21 3358 (954 287) 2.1 × 10−4

106 960 7 25 5692 (6583 532) 1.7 × 10−4

155 810 7 26 12 396 (20 350 766) 1.2 × 10−4

375 708 8 35 21 388 6.3 × 10−5

620 708 8 39 53 840 5.7 × 10−5

Figure 6. Geometry and dimensions for the fourth example.

Table VI. CPU Time and relative error of nodal values for the fourth example.

Number of nodes 108 960 137 370 159 680 192 500 255 180
Relative error of nodal values 6.42% 3.81% 3.35% 2.33% 1.91%
CPU time (s) 25 386 37 840 43 058 55 670 67 725

Computations are performed for five nodal arrangements, namely, 108 960 nodes, 137 370
nodes, 159 680 nodes, 192 500 nodes and 255 180 nodes, which are uniformly distributed on
all the surfaces. The relative errors of nodal values of normal flux, evaluated using Equation
(50) with u being replaced by q and Ns being the total number of nodes, are presented in the
second row of Table VI. The third row of Table VI lists the computational time used for solving
the problem. Figure 7 shows the numerical results, obtained with the fifth nodal arrangement,
of u and its y-derivative evaluated at 31 sample points uniformly spaced on the line segment
from (1, −30, 0.8) to (1, 30, 0.8). Results in both Table VI and Figure 7 demonstrate that high
accuracy and efficiency can be achieved by the FM–HBNM. From Figure 7 it is seen that
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Figure 7. Results of potential and its gradient qy (≡ �u/�y) along an internal segment
(from (1, −30, 0.8) to (1, 30, 0.8)).

no ‘boundary layer effect’ appears. We should point out here that it is almost impossible to
obtain a reasonable discretization with finite elements for this geometry. In an implementation
of BEM, much effort is required to discretize all the surfaces with high quality boundary
elements. However, in our method, we just need to define the surfaces in their parametric
representations, which can be done very easily.

6. CONCLUSIONS AND DISCUSSION

The FMM has been incorporated into the Hybrid BNM. The combined approach has been
successfully applied for solving problems in 3D potential theory. Numerical examples demon-
strate the nearly linear complexity of the FM–HBNM. High accuracy has been
achieved.

The FM–HBNM retains the advantages of both the meshless method and the fast solver. It
not only results in considerable savings in computing time and memory, but also substantially
simplifies the discretization tasks for problems with complicated geometries. Therefore, the
proposed method is especially applicable for large-scale simulations of bodies with intrigue
geometries, such as carbon nanotube based composites [21, 22].

It is worth noting that, in the present paper, the Hybrid BNM is combined with the original
FMM [12]. Actually, Greengard and Rokhlin have developed a new version of FMM [13], in
which they use a new diagonal form for translation operators and further enhance the effi-
ciency of FMM. To incorporate the new FMM into the Hybrid BNM is a subject for future
research.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:660–680



680 J. ZHANG, M. TANAKA AND M. ENDO

ACKNOWLEDGEMENTS

The support of the CLUSTER of Ministry of Education, Culture, Sports, Science and Technology
(Japan) is gratefully acknowledged.

REFERENCES

1. Belytschko T, Lu YY, Gu L. Element free Galerkin methods. International Journal for Numerical Methods
in Engineering 1994; 37:229–256.

2. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P. Meshless methods: an overview and recent
developments. Computer Methods in Applied Mechanics and Engineering 1996; 139:3–47.

3. Atluri SN, Zhu T. A new meshless local Petrov–Galerkin approach in computational mechanics. Computational
Mechanics 1998; 22:117–127.

4. Mukherjee YX, Mukherjee S. The boundary node method for potential problems. International Journal for
Numerical Methods in Engineering 1997; 40:797–815.

5. Zhang JM, Yao ZH, Li H. A hybrid boundary node method. International Journal for Numerical Methods
in Engineering 2002; 53:751–763.

6. Zhang JM, Tanaka M, Matsumoto T. Meshless analysis of potential problems in three dimensions with
the hybrid boundary node method. International Journal for Numerical Methods in Engineering 2004;
59:1147–1160.

7. Zhang JM, Yao ZH. Meshless regular hybrid boundary node method. Computer Modeling in Engineering
and Sciences 2001; 2:307–318.

8. Zhang JM, Yao ZH, Tanaka M. The meshless regular hybrid boundary node method for 2-D linear elasticity.
Engineering Analysis with Boundary Elements 2003; 27:259–268.

9. Zhang JM, Yao ZH. The regular hybrid boundary node method for three-dimensional linear elasticity.
Engineering Analysis with Boundary Elements 2004; 28:525–534.

10. Zhang JM, Yao ZH. Analysis of 2-D thin structures by the meshless regular hybrid boundary node method.
Acta Mechanica Sinica 2002; 15:36–44.

11. Rokhlin V. Rapid solution of integral equations of classical potential theory. Journal of Computational Physics
1985; 60:187–207.

12. Greengard L, Rokhlin V. A fast algorithm for particles simulations. Journal of Computational Physics 1987;
73:325–348.

13. Greengard L, Rokhlin V. A new version of the fast multipole method for the Laplace equation in three
dimensions. Acta Numerica 1997; 6:229–269.

14. Greengard L. The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press: Cambridge, 1988.
15. Nabors K, Korsmeyer FT, Leighton FT, White J. Preconditioned, adaptive, multipole-accelerated iterative

methods for three-dimensional first-kind integral equations of potential theory. SIAM Journal on Scientific
Computing 1994; 15:713–735.

16. Nishida T, Hayami K. Application of the fast multipole method to the 3D BEM analysis of electron
guns. In Boundary Elements XIX, Marchettia M, Brebbia CA, Aliabadi MH (eds). Computational Mechanics
Publications: Southampton, 1997; 613–622.

17. Yoshida K, Nishimura N, Kobayashi S. Application of fast multipole Galerkin boundary integral equation
method to elastostatic crack problems in 3D. International Journal for Numerical Methods in Engineering
2001; 50:525–547.

18. DeFigueredo TGB, Brebbia CA. A new hybrid displacement variational formulation of BEM for elastostatics.
In Advances in Boundary Elements, Brebbia CA, Conner JJ (eds), vol. 1. Computational Mechanics
Publications: Southampton, 1989; 47–57.

19. Atluri SN, Kim HG, Cho JY. A critical assessment of the truly meshless local Petrov–Galerkin (MLPG),
and local boundary integral equation (LBIE) methods. Computational Mechanics 1999; 24:348–372.

20. Saad Y, Schultz MH. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear
system. SIAM Journal on Scientific and Statistical Computing 1986; 7:856–869.

21. Zhang JM, Tanaka M, Matsumoto T, Guzik A. Heat conduction analysis in bodies containing thin-walled
structures by means of Hybrid BNM with an application to CNT-based composites. JSME International
Journal, Solid Mechanics and Material Engineering (Series A) 2004; 47:181–188.

22. Zhang JM, Tanaka M, Matsumoto T. A simplified approach for heat conduction analysis of CNT-based
nano-composites. Computer Methods in Applied Mechanics and Engineering 2004; 193:5597–5609.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:660–680


